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Abstract

The filter tree, a new reduction scheme for the N -class classification problem,
has been recently developed by Beygelzimer et al. Filter trees have been
proven to be both robust and consistent. In this report, we investigate
filter trees whose nodes are binary SVM classifiers, and whether they can
be applied to the problem of small-vocabulary, continuous ASR. A SVM-
based filter tree was implemented for the ISOLET and AURORA tasks,
and demonstrated encouraging improvements over a selection of baseline
systems.
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Chapter 1

Introduction

Binary classifiers have been thoroughly studied in the past, especially in the
context of pattern recognition. Popular techniques such as linear classifiers,
support vector machines (SVMs) and neural networks (notably perceptrons)
are now well understood.

However, many pattern recognition problems, such as automatic speech
recognition (ASR), are essentially multi-class. Most of the binary classifiers
cannot readily be extended to handle more than two classes. Therefore,
devising multi-class recognisers by using binary classifiers as building blocks
is currently an active subject of research. The filter tree algorithm is a
relatively new approach that has been proven to be both consistent and
robust, compared to other known reduction schemes.

Noisy environments constitute a thorny obstacle against reliable speech
recognition. The continuous noise in a car may disturb the navigation sys-
tem; loud, intermittent noises in a factory can incapacitate a voice-controlled
command panel. Noise perturbs the recorded observations, and introduces
a mismatch between the (usually clean) training conditions, and the envi-
ronment where the ASR system is effectively put to use. Even a relatively
clear signal-to-noise ratio (SNR) of 20dB can severely damage the accuracy
of recognisers that do not perform some form of noise compensation. State-
of-the-art ASR systems can achieve laudable results, but there is still room
for improvement.

This report is two-fold. First, the feasibility of using SVM-based filter
trees for speech recognition is examined. One issue is that the dynamic
audio data must be converted into static data usable by SVMs. It is also
unclear what kind of feature space should be used at each node. Secondly,
the accuracy of the filter tree algorithm is evaluated in the context on two
small-vocabulary ASR tasks: a clean isolated letter database (ISOLET),
and a noisy continuous digit database (AURORA).
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Chapter 2

ASR with Hidden Markov

Models

The Hidden Markov Model (HMM) is a well-known generative model of
speech. One reason for its popularity is that HMMs are naturally apt to
classify variable-length data. As they are a fundamental tool in this report,
HMMs are briefly discussed in this chapter.

2.1 HMMs as generative models of speech

Given a sequence of observation vectors O = (~o1, . . . , ~oT ), the problem of
automatic speech recognition is to find the most likely sequence of words
Ŵ = (w1, . . . , wn):

Ŵ = argmax
W

P (W|O) = argmax
W

P (O|W)P (W)

P (O)
= argmax

W
P (O|W)P (W)

P (O|W) is called the acoustic model, and quantifies the likelihood of an
observation given a certain word. The language model P (W) predicts the
probability of a sequence of words in a given language.

HMMs are generative models for the acoustic model. They are a kind of
finite-state machines defined by:

• a set of states {si}

• a transition matrix (aij) where the constant aij is the probability to
go from state si to sj

• a set of output probabilistic functions {bi(~o)}, one per state

Because HMMs are often used to represent temporal phenomena, the
state topology is typically a left-to-right one, possibly with no skip, al-
though this is not by all means always the case. Figure 2.1 shows a typical
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representation of a HMM. HMMs also include a non-emitting start and end
states. One key advantage of these two states is that it is easy to glue HMMs
together into complex networks.

Figure 2.1: A typical HMM

Considering a time discretisation into frames of constant duration, at
each frame t, the HMM changes its active state from si to sj , depending on
the (aij), then emits a feature vector ~ot with probability bj(~ot). The Markov
chain is hidden in the sense that the current active state is not known; only
the (~ot) can be observed.

The bi functions are typically mixtures of M d-dimensional Gaussian
components, defined by M means ~µim and M covariance matrices Σim:

bi(~o) =
M
∑

m=1

cim

(2π)d/2|Σim|1/2
e
−1

2
(~o − ~µim)⊤Σ−1

im(~o − ~µim)

As generative models of speech, HMMs can be applied to speech recog-
nition, by finding the most likely sequence of HMM states through an HMM
network. Efficient dynamic programming procedures exist to do that, a
popular one being the token-passing Viterbi algorithm.

2.2 Expectation-Maximisation

It should be noted that Gaussian mixture models can be seen as networks
of single-component HMMs. Figure 2.2 illustrates this. In this section,
we therefore assume only one Gaussian component per state, in order to
simplify the discussion.

Figure 2.2: If state j has 3 Gaussian components with weights c1, c2, c3, the
HMM can be replaced by a network of single-components HMM.
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Let θ be the set of all the HMM model parameters, i.e. the set {~µi,Σi, aij}
of all means and variances of the Gaussian component for each emitting
state, as well as the transition matrix.

Training a HMM is about estimating θ. This must be done algorithmi-
cally, since the high dimensionality of θ precludes a manual intervention.
Maximum Likelihood Estimation (MLE) methods are often used to train
HMMs. They aim at maximising P (O|θ) for a given set of training data.
Direct maximisation of P is not possible with HMMs though, because the
exact sequence of states that generated O is unknown. Dempster et al. in-
troduced in [5] the Expectation-Maximisation (EM) iterative optimisation
algorithm, which overcomes the issue.

Let Z be the set of all possible sequences of HMM states, and θ(k) be
the estimated value of θ at the kth iteration.

First, the auxiliary function is introduced as:

Q(θ(k), θ(k+1)) =
∑

S∈Z

P (S|O, θ(k)) log P (O,S|θ(k+1))

It can be shown that increasing the auxiliary function will increase the
likelihood:

Q(θ(k), θ(k+1)) ≥ Q(θ(k), θ(k)) ⇒ P (O|θ(k+1) ≥ P (O|θ(k))

The EM algorithm consists of two steps:

1. E step: Compute the expectancy ES∈Z

(

log P (O,S|θ(k+1))
∣

∣

∣
O, θ(k)

)

2. M step: Maximise Q′(θ(k+1)) = Q(θ(k), θ(k+1)) with respect to θ(k+1)

The EM process should be repeated until convergence has been reached.
The mathematical foundations described in [5] guarantee that each iteration
of the process will not decrease the likelihood, but it is possible that it
converges only towards a local maximum.

Note that the process must be somehow initialised by estimating θ(0).
When training HMMs, this can be done by computing the means ~µ and
variance Σ of the training data, and initialise all the Gaussians’ means
and variances with the same values ~µ and Σ. The formulæ to update the
components’ means and variances, derived from the EM algorithm, are:
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~µ
(k+1)
i =

∑T
t=1 γ

(k)
i (t)~o(t)

∑T
t=1 γ

(k)
i (t)

Σ
(k+1)
i =

∑T
t=1 γ

(k)
i (t)(~o(t) − ~µ

(k+1)
i )(~o(t) − ~µ

(k+1)
i )⊤

∑T
t=1 γ

(k)
i (t)

a
(k+1)
ij =

∑T
t=1 α

(k)
i (t)a

(k)
ij b

(k)
j ~o(t + 1)β

(k)
j (t + 1)

∑T
t=1 α

(k)
i (t)β

(k)
i (t)

, for j < N

where α
(k)
i , β

(k)
i and γ

(k)
i are functions defined as:















α
(k)
i (t) = P (~o(1), . . . , ~o(t), s(t) = i|θ(k))

β
(k)
i (t) = P (~o(t + 1), . . . , ~o(T )|s(t) = i, θ(k))

γ
(k)
i (t) = P (s(t) = i|O, θ(k))

2.3 Large vocabulary tasks

A difficult class of ASR problems relates to the support of vocabulary larger
than, say, 104 words. Building one HMM for each word of the vocabulary is
not a scalable solution. However, HMMs can be built not only for words, but
also for a variety of sub-words units, such as phones, or triphones (phones
with the immediate left and right context).

Suppose a pronunciation dictionary, or lexicon, is available. The problem
of large vocabulary continuous speech recognition (LVCSR) can addressed
by:

• Building and training HMMs for a set of 40 to 50 phones

• Recognition yields the most probable sequence of phones

• By looking up the pronunciations in the lexicon, the word sequence
can be reconstructed

HMMs have been shown to be an efficient and flexible solution to the
LVCSR problem.

8



Chapter 3

Support vector machines

3.1 Actual risk and empirical risk

3.1.1 Notion of risk

Let X be a finite set of l points {~x1, . . . , ~xl} of R
d, where each point is given

a binary label y ∈ {0, 1}. Consider a set {fθ(~x) : X → {0, 1}} of binary
classifiers, parametrised by some variable θ. The risk R(θ) of a classifier
fθ(~x) is defined as the expected classification error rate:

R(θ) =

∫∫

|y − fθ(~x)|p(~x, y)d~xdy

Because p(~x, y) is rarely known, we can only calculate the empirical risk
over a finite set of l points:

Remp(θ) =
1

l

l
∑

i=1

|yi − fθ(~xi)|

One shortcoming of the empirical risk is that it is only a lower bound of
the actual risk. It is indeed easy to train a classifier so that Remp = 0 on
the training data, while the actual error rate on the test data is high1.

The sections below show that the empirical risk can still be used to
estimate the actual risk.

3.1.2 VC dimension

A set S of binary classifiers {fθ} is said to shatter a subset X of R
d if,

for every binary labelling y(x) : X → {0, 1} of X, there exists a classifier
f∗ = fθ∗ that correctly classifies all samples of X. The Vapnik-Chervonenkis

1One degenerate example is simply to build a hash table for all the training data,
provided that it contains no mislabelled sample. The generalising power of such a classifier
is of course null, because it is unable to classify any unseen example.
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(VC) dimension h of S over X is defined as the maximum number of points
drawn from X that can be shattered by S.

To illustrate this definition, let d be equal to 2, X be a set of non-collinear
points of R

d, and S be the set Sl
2 of all the linear classifiers over R

2. Figure
3.1 graphically demonstrates that, for each possible triplet T of labelled
points, there exists a linear decision boundary that shatters T . A counter-
example is given in figure 3.2, where a set of four labelled samples cannot
be shattered by any classifier of Sl

2. That means that the VC dimension2 of
Sl

2 is 3.

Figure 3.1: Sl
2 shatters any labelled, linearly-independent triplet of R

2

Figure 3.2: A counter-example with four points of R
2

Informally, the VC dimension h can be interpreted as a measure of the
complexity of a learning machine. Yet, it is interesting to note that decreas-
ing the dimensionality of θ does not necessarily decrease the VC dimension.
Burges [3] gives an example of S = {fθ} where θ is a plain real number, but
the VC dimension of S is infinite. Similarly, an infinite VC dimension is not
a guarantee of good classification performances.

2Note: if the three points are aligned, then it may not be possible to shatter them
with a linear classifier. Consider the case where the labels of the three aligned points are
respectively 0, 1 and 0.
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3.1.3 Structural risk minimisation

As shown by Vapnik[24], one of the practical uses of the VC dimension h is
to provide an upper bound of the actual risk R(θ), as a function b(h, l, η) so
that the following inequality holds with a probability of 1−η, with η ∈ ]0, 1[:

R(θ) ≤ Remp(θ) + b(h, l, η)

The exact expression of b(h, l, η) is beyond the scope of this report, but
it is schematically represented in figure 3.3.

The structural risk minimisation (SRM) principle, as introduced by Vap-
nik, is to choose the classifier fθ that minimises the bound on risk. It ad-
dresses the issue of overfitting by striking a balance between the model’s
complexity, and its ability to fit the training data.

Figure 3.3: Finding the optimal VC dimension

3.2 Support vector machines

Support vector machines (SVMs) are a type of binary classifiers that ap-
proximates the SRM principle.

Consider the general problem of finding a binary classifier for a training
set of labelled3 samples X = {(~xi, yi)}, where:

∀i,

{

~xi ∈ R
d

yi ∈ {−1, 1}

3.2.1 The linearly-separable case

First, we assume that the points are linearly separable, which means that
there exists at least one hyperplane H of R

d, whose equation is of the form

3We took the liberty of changing the label space in order to make the later equations
easier.
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(3.1), which splits the space into one subspace containing all the positive
examples X+ = {~xi / yi = 1}, and one subspace containing all the negative
examples X− = {~xi / yi = −1}, without errors.

H = {~x ∈ R
d / ~φ · ~x + b = 0} (3.1)

~φ is the oriented normal of the hyperplane H, and b is its bias. Assuming
that X+ is located in the half-space {~x / ~φ · ~x + b > 0}, then let H+ and H−

be defined as:

{

H+ = {~x ∈ R
d / ~φ · ~x + b+ = 0}

H− = {~x ∈ R
d / ~φ · ~x + b− = 0}

where:











b+ = max
x∈X+

(−~φ · ~x)

b− = min
x∈X−

(−~φ · ~x)

H+ and H− classify X according to:

∀xi ∈ X,

{

~φ · ~x + b+ ≥ 0 ⇒ xi ∈ X+

~φ · ~x + b− ≤ 0 ⇒ xi ∈ X−

Figure 3.4 shows two possible choices for the decision boundary in R
2.

The rationale behind SVMs is to maximise the margin between the two
hyperplanes H+ and H−. Intuitively, by achieving maximum separation be-
tween the two classes, the resulting classifier will generalise better to unseen
data. For that reason, SVMs are sometimes referred to as maximum margin
classifiers.

Figure 3.4: Different hyperplanes give different margins. Vectors that lie on
the boundaries H+ and H− are circled.
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If H is equidistant from H+ and H−, and if the input space is translated
so that H goes though the origin, then the hyperplane equations can be
rewritten as:

{

H+ = {~x ∈ R
n / ~φ · ~x + b = 1}

H− = {~x ∈ R
n / ~φ · ~x + b = −1}

The distance from H+ and H− to the origin are respectively |1− b|/||~φ||
and |1+b|/||~φ||. The margin between the two hyperplanes is therefore equal
to 2/||~φ||. The problem of finding the optimal hyperplane can thus be for-
malised as follows:

Find (~φ∗, b∗) that minimises ~φ · ~φ under the following constraints:

∀xi ∈ X,

{

~φ · ~xi + b ≥ 1, if yi = 1

~φ · ~xi + b ≤ −1, otherwise

To solve this problem, the Lagrange function is introduced:

L(~φ, b, α1, . . . , αl) =
1

2
~φ · ~φ −

l
∑

i=1

αi(yi(~φ · ~xi + b) − 1)

where the αi ≥ 0 are the Lagrangian multipliers. By writing:















∂L

∂~φ
(~φ∗, b∗, α∗

i ) = ~0

∂L

∂b
(~φ∗, b∗, α∗

i ) = 0

one can derive:

~φ∗ =
l

∑

i=1

α∗
i yi~xi (3.2)

Additionally, the Kuhn-Tucker theorem states that:

∀i ∈ {1, . . . , l}, α∗
i (yi(~φ

∗ · ~xi) + b∗) − 1) = 0 (3.3)

Equation 3.3 is interesting because it implies that the α∗
i are non zero

only for samples that lie exactly on H+ or H−. Such samples are called
support vectors. They lead to a sparse representation of the hyperplane
equation for H, because reporting the zero α∗

i ’s back into equation 3.2 shows
that non-support vectors do not contribute to the summation.
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The optimisation problem is commonly solved for the equivalent dual op-
timisation problem, where the following quadratic expression is maximised:

W (~α) =

l
∑

i=1

αi −
1

2

l
∑

i=1

l
∑

j=1

αiαjyiyj~xi · ~xj (3.4)

Because the solution can be proved to be unique, some specialised algo-
rithms, such as [16], have been devised to efficiently solve it.

Let SV be the set of the support vectors. Once a SVM has been trained,
classification is done by computing the SVM score:

s(~x) =
∑

~xi∈SV

α∗
i yi~xi · ~x (3.5)

The sign of the score gives the class of ~x:

{

s(~x) > 0 ⇒ x ∈ X+

s(~x) < 0 ⇒ x ∈ X−

(3.6)

3.2.2 The non-separable case

Support vector machines can be elegantly extended to the case where the
training data is not linearly separable, by using so-called slack variables ξi.

The idea is that ξi represents the ability for xi to be on the wrong side
of the decision boundary. As shown in figure 3.5, the ξi for an ill-placed
sample xi is defined as the distance from xi to the correct hyperplan. If xi

lies in the correct half space, then ξi is zero.

Figure 3.5: Illustration of a slack variable ξ. If ξ is in [0, 1[, the sample lies
within the margin, but is still correctly classified. If ξ ≥ 1, as is the case
here, then the sample is misclassified by the SVM.

The optimisation problem is now about both maximising the margin
and minimising the number of training errors. The balance between the
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two conflictual objectives can be controlled by a variable C. The relaxed
soft-margin optimisation problem is therefore defined as follows:

Find (~φ∗, b∗, ~ξ∗) that minimises

1

2
~φ · ~φ + C

l
∑

i=1

ξi

under the following constraints:

∀xi ∈ X,

{

~xi · ~φ + b ≥ 1, if yi = 1

~xi · ~φ + b ≤ −1, otherwise

Small values of C will maximise the margin, at the expense of more
training errors.

This problem can be solved by maximising the same quadratic form 3.4
as with the hard-margin case:

W (~α) =

l
∑

i=1

αi − 1/2

l
∑

i=1

l
∑

j=1

αiαjyiyj~xi · ~xj

but with slightly different constraints:















∀i ∈ {1, . . . , l}, 0 ≤ αi ≤ C

l
∑

i=1

αiyi = 0

Note that, interestingly, the ξi do not occur in the equation. Again, opti-
mised algorithms exist to solve this efficiently, and the run-time classification
is done using equations 3.5 and 3.6, as before.

An interactive Java applet[31], based on [27], provides an entertaining
visual introduction to the dynamics of support vector machines.

3.2.3 Kernels

Notice how the equations for the SVM training (3.4) and the classification
score (3.5) only involve dot products of vectors. SVM can in fact be ker-
nelised by substituting the bilinear dot product function by a (possibly non
linear) kernel function.

~xi · ~xj −→ k(~xi, ~xj) : R
d × R

d 7→ R
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Popular kernels include

• The linear kernel: k(~xi, ~xj) = ~xi · ~xj

• Polynomial kernels: k(~xi, ~xj) = (a.~xi · ~xj + b)c

• Gaussian kernels: k(~xi, ~xj) = exp(−γ ||~xi − ~xj||2)

The advantage of using kernels is that the feature space does not have
to be explicited, and can potentially be of a higher dimensionality than the
original input space. This is interesting because this allows SVMs to be
theoretically more powerful than plain linear classifiers. As shown in figure
3.6, it is possible to map the initial input space to a better feature space, via
a non linear mapping function Φ, so that a problem initially not separable
with linear classifiers, becomes linearly separable in a judiciously augmented
feature space. The mapping used in the example is:

Φ
(x
y

)

=
(x2 + y2

xy

)

R
2 7→ R

2

Figure 3.6: Better separation can achieved in a suitably transformed feature
space.

Kernel functions are a way to introduce an implicit augmented feature
space. The Mercer theorem proves the existence of a mapping Φ(~x) for a
given kernel k, so that k(~xi, ~xj) = Φ(~xi) ·Φ(~xj), provided that k is symmet-
ric, continuous, and positive semi-definite. The mapping function Φ is not
explicited, but it would not be useful if it was anyway.
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3.3 Classifying dynamic data

SVMs are by their nature adapted to classify static data, that is, data of a
fixed dimensionality d. Unfortunately, speech recognition involves variable-
length sequences of observations. The first attempts to use SVMs in ASR
systems tried to select a fixed number of observations, either by somehow
picking up representative observation vectors, or by applying a dynamic
time warping (DTW) transformation. Performance were not satisfactory as
important information tended to be lost in the process.

3.3.1 Generative kernels

Generative kernels ([11], [21]) are derived from generative models. In the
case of speech recognition, the generative models are standard HMMs. For
a given variable-length sequence O of observation, a log likelihood score
L = log(P (O|M)) can be calculated for a given HMM M. L is therefore a
function of the means ~µi, variances Σi, and component weights cim of the
HMM.

For instance, one can extract additional information from L, by deriving
it with respect to some or all of the ~µi, Σi and cim parameters. One can thus
build a fixed-length feature space vector ~x from the variable-length sequence
O, by grouping L and the n scalars derived from L into a single vector called
score. The set of possible scores for a given set of extracted features is called
the score space. Scores based on the first order derivatives of L are called
Fisher scores. Other types of scores exist. For a two-class problem, better
results can be obtained[20] with score spaces defined on the log ratio:

LR = log
P (O|M1)

P (O|M2)

Generative score spaces map variable-length sequences into scores of
fixed dimensionality, thus making SVMs a viable tool for ASR systems.
One more refinement is needed for a efficient usage though. Due to the
widely different dynamic ranges of the input data, and the fact that SVMs
are sensitive to scaling, comparing vectors is not straightforward. Experi-
ments have shown that using a plain Euclidian distance typically performs
poorly.

In other words, we need to define a reasonable distance metric over the
feature space. This hurdle can be overcome by applying a Mahalanobis
distance based on the covariance matrix Σ of the score space. Using the im-
proved scalar product Φ(~a)Σ−1Φ(~b) normalises the score space by whitening
it. The obtained distance is said to be maximally non-committal in the sense
that it is not biased towards feature dimensions with large dynamic ranges.
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3.3.2 Score space feature selection

Because complex HMMs can have more than 103 parameters, the feature
vectors can quickly grow quite large. Additionally, not all the features ex-
tracted from L or LR necessarily contain useful information. It is thus
worthwhile to reduce the dimensionality of the score space by dropping
some of its dimensions.

A popular criterion for quantifying the usefulness of features is the Fisher
ratio. For any dimension of the d-dimensional feature space, and two classes
characterised by their means (µ+, µ−), and their variances (σ2

+, σ2
−), the

Fisher ratio f can be expressed as the ratio of the between-class means to
the within-class variances:

f =
(µ+ − µ−)2

σ2
+ + σ2

−

Intuitively, features with the largest distance between the class means,
and the smallest class variances are more discriminatory. By computing the
Fisher ratio for all the dimensions, and sorting them in decreasing order, a
fixed number of d′ < d dimensions can be selected amongst the dimensions
with the largest Fisher ratios.

It has been shown[21] that selecting the highest Fisher ratios does not
reduce the accuracy of the SVM, and can occasionally improve the per-
formance, by removing potentially noisy dimensions. There seems to exist
an optimum number of dimensions, but it can only be determined through
experimentations.

3.3.3 Score concatenation

The generative kernels discussed so far have only used one or two HMMs
to build the score space. However, a typical ASR system is multi-class. In
order to obtain a more expressive score space, the scores derived from each
HMM can be concatenated together into a super score. Feature selection
should be performed afterwards on the resulting score space, in order to
prune non-discriminatory features, and keep its dimensionality reasonably
low. Figure 3.7 illustrates this process with 3 HMMs.

Score space concatenation combined with score space feature selection
provide a flexible framework to control the complexity of the score space
while retaining the most useful information for the classification task.

3.3.4 Score space notation conventions

In this section, we describe a compact way of specifying a score space. Sup-
pose we have two generative models M1 and M2 at our disposal. A gen-
erative score space is uniquely determined by an unordered bag of letters
taken from the following set: { l, s, u, m, v, w, x, y, z }. Table 3.1 lists the
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Figure 3.7: Score space concatenation and reduction

meaning of each letter. Fisher scores can be computed by considering M2

“constant”, and focusing on the features l, s, m, v and w only.
The score vector is the concatenation of all the selected features. To

give an example of the dimensionality, the third column of table 3.1 gives
the number of dimensions for each score type, for a HMM with ten emit-
ting states, and four 39-dimensional Gaussian components per state4. For
example, the lm score space represents a 1561-dimensional vector space.

Letter Meaning Dimensionality

l Log-likelihood ratio LR of the two models 1
s M1 posterior P1 1
u M2 posterior P2 1
m Derivatives of M1 w.r.t. the means 1560
v Derivatives of M1 w.r.t. the variances 1560
w Derivatives of M1 w.r.t. the component weights 40
x Derivatives of M2 w.r.t. the means 1560
y Derivatives of M2 w.r.t. the variances 1560
z Derivatives of M2 w.r.t. the component weights 40

Table 3.1: Notation system for the score space

4This is the HMM setup used in chapter 7.2.
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Chapter 4

Multi-class classification

4.1 The N-class classification problem

Let X be a set of l samples, and Y = {y1, . . . , yN} be the label space. Let
L(x) : X → Y be a class distribution that assigns a unique label to each
sample.

We can define a cost function cost(x, yi) : X × Y → R
+ that gives the

cost of assigning label yi to the sample x. The cost of correctly classifying
x should be zero: cost(x,L(x)) = 0.

The cost-sensitive classification problem is the problem of finding a clas-
sifier function C : X × Y that minimises the classification loss e(C,L):

e(C,L) =
∑

x∈X

cost(x,C(x))

It is easy to convert a cost-sensitive classification problem into a cost-
insensitive one, by defining the cost function as:

∀x ∈ X,∀i ∈ {1, . . . , N},
{

cost(x, yi) = 1 if L(x) 6= yi

= 0 otherwise

In that case, the loss represents the number of samples C misclassifies.
In the following sections, a selection of cost-insensitive classifiers are

presented.

4.2 Multi-class SVMs

It is theoretically possible to extend the binary SVM into a N -class classifier.
Given N classes, and l training samples, Weston & Watkins [26] suggest that
N hyperplanes can be obtained at once by solving the following optimisation
problem:
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Figure 4.1: Multi-class SVM classification example. Support vectors are
circled.

Find the 2N + (N − 1)l parameters (~φ∗
n, b∗n, ~ξ∗n,i) that minimise:

1

2

N
∑

n=1

(~φn · ~φn) + C

l
∑

i=1

∑

n 6=yi

ξn,i

under the following constraints:

∀i ∈ {1, . . . , l},∀n ∈ {1, . . . , N} − {yi},
{

(~φyi
· ~xi) + byi

≥ (~φn · ~xi) + bn + 2 − ξn,i

ξn,i ≥ 0

Section 5 of [26] gives more mathematical details, including an implicit
expression of the analytical solution, but no explicit solution is given.

Multi-class SVMs would appear to be a powerful tool. However, it turns
out that they are not that practical to use, because the optimisation problem
to solve is much more complex than its binary counterpart. Section 3 of Hsu
& Lin [10] explains some of the difficulties of the task. As for today, solutions
for the generic N -class SVM training are not satisfactory. In the end, it is
often more profitable to train N binary SVMs, and combine their decisions
into a multi-class system.

The process of splitting a multi-class classification problem into a serie
of binary classifications is called a reduction. Many efficient binary clas-
sifiers are known today, but multi-class problems are more frequent than
binary ones. This mismatch gave an incentive to study reduction schemes,
a selection of which is presented in the following sections.
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4.3 One-versus-one classifiers

A natural idea to reduce the N -class classification problem is to build a
binary classifier for each possible pair of classes. For N classes, that means
building C2

N binary classifiers1.
Let (yi, yj) be two distinct classes, and let [ij] be the associated classifier.

[ij] can be trained to answer the question “Is class i more probable than j
for the given observation?”. In that case, we say that [ij] is a one-versus-one
classifier.

Consider three samples xi, xj , xk, representative respectively of three
distinct classes yi, yj , yk. An optimal [ij] classifier2 would assign the label
i to xi, and the label j to xj . We do not care about what label [ij] assigns
to xk, because the question is rather baseless. Consequently, for a given
sample xi, we have N − 1 “meaningful” classifiers [ij] (for all j 6= i), and
C2

N − N + 1 “meaningless” classifiers.
Combining C2

N output labels into a final, unique label can be done by
drawing an analogy with a voting process: classifying a sample is equivalent
to a vote between the classifiers, to elect a winner label.

For a given class yi, consider the classification of xi. If we have optimal
classifiers at our disposal, for any j 6= i, all the [ij] classifiers will vote for yi.
Therefore, class yi will obtain all its N−1 votes. All other classes will obtain
at most N − 2 votes, but not more, and i should be elected the winner.

Algorithm

A set B of C2
N binary classifiers is trained for all the possible unordered pairs

of classes in Y. The binary classifier [ab] should be trained with X
a
train ∪

X
b
train, that is, training samples drawn from classes ya and yb.

Once all the classifiers have been trained, the run-time recognition is
done according to algorithm 1.

A number of observations about this algorithm should be made. First,
it is a priori suboptimal, because each binary classifier is trained indepen-
dently one from another. Similarly, at run-time, the predictions of one
classifier are irrelevant to other classifiers. An optimal multi-class system
would try to optimise the decision rules for all the binary classifier jointly.

Another issue is that the assumptions made are optimistic:

• Because the classifiers are likely to be non-optimal, the legitimate class
i may not win all its N − 1 rounds.

• It is possible that the [jk] classifiers “conspire” to all vote for a wrong
class k. k could end up with more votes than i.

1
C

k

n =
`

n

k

´

= n!
k!(n−k)!

2Optimal meaning here that the classifier never misclassifies.
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Input: a sample s ∈ Xtest to classify, B, Y

Output: a letter prediction
foreach y ∈ Y do

vote(y) = 0
end

foreach classifier [ab] ∈ B do
prediction = [ab].Classify(s)
Increment vote(prediction)

end

max nb votes = maxy∈Y(vote(y))
winners = {y ∈ Y/vote(y) = max nb votes}
if winners contains only one element a then

return a
end

if winners contains only two elements a, b then
w = [ab].Classify(s)
return w

end

else
return a random element of winners

end
Algorithm 1: Majority voting with one-vs-one classifiers

• Another possibility is that no clear winner emerges, because there are
two or more finalists after the voting session.

Note that when there are more than two finalists, ties are resolved ran-
domly. The inability of such simple majority-voting systems to resolve n-ary
ties is a known weakness. One way to solve this is to invoke a non-binary
classifier of a radically different nature as a final arbiter, in order to select
one letter over the remaining finalists3.

Despite these weaknesses, one-versus-one classifiers remain interesting
for two reasons. First, each binary classifier can specialise itself to focus on
certain features of the observation vectors to make its predictions. When
implementing the binary classifiers as SVMs with dynamic kernels, that
means the score space can be tailored to the specific needs of each classifier.
Also, no choice regarding the class ordering has to be made, so this scheme
is robust in that respect. This is potentially not the case with the tree
schemes, discussed in the next section.

3In our case, that system could be a standard HMM recogniser.
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4.4 Decision graphs

A number of reductions have been devised based on directed binary graphs.
A binary directed acyclic graph (DAG) is defined by a finite set of labelled
nodes, and a finite set of directed arcs i → j between these nodes. The
binary DAG is also subject to the following constraints:

• All nodes except one must have at least one parent node. The node
with no parent is called the root node r.

• All non-leaf nodes must have exactly two children, leftChild, and
rightChild.

• The graph is acyclic: there exists no sequence of nodes (n1, . . . , ni) so
that nj+1 is a child of nj, and n1 = ni.

Such graphs are typically trees (i.e. all non-root nodes have only one
parent), but this is not necessarily the case, as in figure 4.2.

To use DAGs in pattern recognition, a class y must be associated to each
leaf, and a binary classifier B assigned to each internal node. The recogni-
tion process is initiated by calling FollowGraph(s, r), which is described in
algorithm 2.

Input: a sample s to classify, a graph node n
Output: a class prediction y
if IsLeaf(n) = true then

return n.y
end

if n.B(s) = true then
return FollowGraph(s, n.leftChild)

end

else
return FollowGraph(s, n.rightChild)

end
Algorithm 2: FollowGraph

Decision directed acyclic graphs (DDAGs) are DAGs where the children
of the ith node in the jth internal layer are the ith and (i + 1)th nodes in
layer (j + 1). An example is given in figure 4.3.

A wide range of possibilities exists to implement the node classifiers.
They could be one-versus-one, one-versus-the-rest classifiers, or they could
classify a set of labels against another, e.g. classify {y1, y2, y3} as one set,
and {y4, y5} as the other. The divide-by-two algorithm [25] follows this idea.
Other possibilities are described in [18], and [9], amongst others.

The DAGSVM, based on [17], is a DDAG with C2
N SVM classifiers. As

shown in figure 4.3, each node is essentially a i-versus-j classifier. For a
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Figure 4.2: A directed acyclic graph, and going through it to classify a
sample

given sample, if the [ij] classifier votes for j, then the sample is decided not
to be a i. In effect, each test removes a candidate class from the list of all
possible classes. After N − 1 tests, the sample is assigned to the remaining
class.

By merging redundant nodes together (i.e. nodes which correspond to
the same list of remaining candidates), the DAGSVM can be seen as an
efficient generalisation of decision trees.

Although the number of classifiers is the same as with the one-versus-
one majority voting algorithm, it is typically faster at run-time, because the
number of evaluations is only in N − 1, the height of the DAGSVM graph.

Platt reports that the DAGSVM relies on an arbitrary choice for the
class order of the leaves, but experimentation with different orders did not
yield significant changes.

4.5 Error-correcting output codes

Error-Correcting Output Codes (ECOC) are introduced by Dietterich &
Bakiri in [6]. ECOC classification draws on the analogy of transmitting in-
formation (the class of the sample) over an unreliable channel. Bit-inverting
errors (0 switched to 1, and vice-versa) occur because notably of the non-
optimal feature space used, the limited training data available, and imperfect
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Figure 4.3: A DAGSVM

classifiers.
The ECOC algorithm tries to automatically correct transmission errors,

as long as there are not too many of them. To do so, each class k is assigned
a L-bit binary string ck, called a codeword. Then L binary functions fl() are
trained, one for each bit position of the codewords.

Codeword
Class f1 f2 f3 f4 f5

A 0 0 0 1 0
B 0 1 1 0 0
C 1 0 0 0 1
D 1 1 0 1 0

Table 4.1: An example 5-bit code table for a 4-classes problem. The code-
word cB for B is ‘01100’.

For a code length L > log2(k), there are 2L possible codewords, of which
only k are assigned. The classification of a sample s is done by first evaluat-
ing the L binary functions fl(s), and concatenating the L bits into a L-bit
string c. Then, a lookup in the code table against c is performed. If c is a
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valid codeword, then classifying it is done by returning the corresponding
class. However, if c is not valid, that means at least one substitution error
has occurred. The code must be compared against each of the valid code-
words, and assigned to the class k whose code is the closest to c, according
to some distance metric.

A useful distance metric over a set of fixed-length binary strings is the
Hamming distance, which is defined as the number of bits that differs be-
tween two strings. The ability of an error-correcting code to detect and
correct bits is directly linked to the minimum Hamming distance between
any two rows of the code table. If a table has a minimum Hamming distance
of 2n, then the maximum number of bit substitution errors that the code
can detect and correct is n.

As a consequence, the binary functions fl() must be chosen as to max-
imise the codeword Hamming distance, so that a larger number of errors can
be corrected. The minimum Hamming distance of table 4.1 is d(A,D) = 2,
so this table can correct only one substitution error.

It has been verified experimentally that functions defined as the pres-
ence or absence of “meaningful” features typically yield codes with a low
Hamming distance, because the features end up being correlated to each
other. Dietterich & Bakiri give an example for a hand-written digit recogni-
tion task, where a binary code built from six meaningful features (“the digit
contains a vertical line”, “the digit contains a closed curve”, etc.) only has
a Hamming distance of one.

Robust error-correcting codes must therefore be derived algorithmically
using features without necessarily a high-level meaning. Unfortunately, the
systematic construction of an optimal code for a given L and k is a non
trivial problem. Different algorithms exist depending on the value of k. In
this report, we concentrate on the case where 8 < k < 12. For these values,
no known algorithm to build the optimal code exists.

A simplified version of Dietterich & Bakiri’s algorithm is proposed here.
First, an exhaustive k-classes code of length L = 2k−1 −1 is built as follows:

• Row 1 is all ones.

• Row 2 consists of 2k−2 zeros followed by 2k−2 − 1 ones

• More generally, row i consists of an alternation of 2k−i zeros and 2k−i

ones until the L bits are filled.

Since the first row is made entirely of ones, we suggest not to use it
(i.e. not to assign it to a class), so that the classifier training is not biased
towards class A.

For a digit recognition task, k = 10 so codewords are 511-bits long4.
This represents too many classifiers, so we randomly extract a number of

4
k = 11 if we include ‘oh’ as a synonym for ‘zero’.
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Codeword
Class f1 f2 f3 f4 f5 f6 f7

A 1 1 1 1 1 1 1
B 0 0 0 0 1 1 1
C 0 0 1 1 0 0 1
D 0 1 0 1 0 1 0

Table 4.2: The exhaustive 7-bit code for a 4-classes problem.

columns L′ < 511, and compute the minimum Hamming distance of the
obtained truncated code. By repeatedly performing this random selection
process, we can select one that gave the largest observed Hamming distance.
Since the distance between any pair of rows is expected to be binomially
distributed with a mean of k/2, only extracted tables with a Hamming
distance greater than k/2 should be considered.

4.6 Combining different types of classifiers

Pattern recognition is a difficult task, and classifiers do mistakes. However,
because different algorithms tend to have different strengths and weaknesses,
it is tempting to try to combine two sub-optimal classifiers into a hopefully
more accurate one.

As we have discussed in section 4.3, it can happen that one-versus-one
majority voting is unable to make a final decision, so it required another
classifier as a fallback arbiter. In our case, it was simply a random choice,
but it could have been replaced by a HMM classifier, or any other classifier.

It is possible to combine two systems in a more systematic way, provided
that each classifier can assign a score, or some confidence measure, over the
chosen classes. In the case of binary classifiers, the score can be a real
number whose absolute value represents how sure the classifier is about the
result, and whose sign represents one of the two classes.

Let B1 and B2 be two binary classifiers, and let s1() and s2() be their
respective confidence score, defined so that samples with positive scores are
assigned to class 1, and samples with negative scores to class 2. Given an
arbitrary α ≥ 0, we can build an interpolated binary classifier Iα

12 as follows:

• Let sα
12(~x) = s1(~x) + α.s2(~x)

• If sα
12(~x) > 0, assign ~x to class 1

• If sα
12(~x) < 0, assign ~x to class 2

If α = 0, the interpolated classifier I0
12 is exactly equal to B1. Similarly,

I+∞
12 is equivalent to B2. Let a(α) be the accuracy of Iα

12. We are interested
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in maximising a(α) as a function of α. While this problem is typically not
solvable analytically, by experimentally evaluating a(α) for different values
of α, we can build an interpolated system that is guaranteed to be at least
as accurate as B1, or B2, whichever is the best. Indeed, in the worst case
where the accuracy of the interpolated system is always decreased, we can
always fallback to α = 0 or α = +∞.

When classifying two classes, the HMM log-likelihood ratio log(P (~x|M1))−
log(P (~x|M2)) is a natural choice for the score function. If a set of classes
must be classified, say {1,2}-versus-{3,4}, then the following extended score
should be used instead:

sHMM
12−34 (~x) = log

[

max
(

P (~x|M1), P (~x|M2)
)

max
(

P (~x|M3), P (~x|M4)
)

]

For SVM recognisers, we can use the algebraic distance (~φ · ~x + b) of ~x
from the decision hyperplane. If the SVM is provided with a maximally non-
committal metric, then all the dimensions of the feature space are considered
to have the same importance. However, it is known that the HMM log-
likelihood is a highly discriminative parameter. Hence, an interesting side-
effect of the SVM-HMM interpolation is that the α parameter can be used to
effectively scale the contribution of the HMM log-likelihood. A SVM-HMM
interpolated recogniser has been built with encouraging results in [8].

More elaborate combination methods exist, such as boosting [19]. How-
ever, they will not be discussed in this report.
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Chapter 5

Filter trees

In [2], Beygelzimer et al. present the filter tree algorithm, which reduces
a multi-class classification problem into a binary classification. It effec-
tively solves the cost-sensitive N -class classification problem by introducing
importance-weighted binary classifiers, based on the idea that predicting
some samples correctly is more important than for some others.

The filter tree can be seen as a kind of DAG (cf. section 4.4), although
the training process is quite different. The filter tree is a binary tree T with
N leaves, each of them being assigned to a distinct class.

5.1 Algorithm

Consider a cost-sensitive training set (Xtrain, cost(x, yi)), a binary filter tree
T and an importance-weighted binary learner procedure Learn. The filter
tree training is a bottom-up procedure, described in algorithm 3.

For each node n, the set Sn = {x, prediction, c} is the training set for
the importance-weighed learner n.classifier, c representing the importance
of node n correctly classifying the sample x. The innovation of the filter
tree training is that Sn depends on the nodes below n: samples that got
misclassified by child nodes are ignored in the upper levels.

It is instructive to describe in detail how the training proceeds. Consider
the simplified cost-insensitive problem where Y = {a, b, c, d}, and where X

is reduced to only one sample xa, representative of class a. The cost of
assigning xa to a is zero, and the cost of assigning it to any of the three
other classes is one.

The filter tree is fixed as shown in figure 5.1. Let us first assume that all
the classifiers are optimal. Table 5.1 lists the content of Sn for each node of
the tree. Because card(X) = 1 in our simplified example, Sn is reduced to
one sample as well.

Clearly it does not really matter how the sample xa is classified by node
N2, because xa is neither a c nor a d. Hence, there should be no cost in
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Input: Xtrain, cost(x, yi), T , Learn
Output: a trained filter tree

foreach internal node n ∈ T , from the leaves up to the root do
Sn = ∅
foreach example x ∈ Xtrain do

a = the prediction of the left subtree of n
b = the prediction of the right subtree of n
c = |cost(x, a) − cost(x, b)|
prediction = argmin(cost(x, a), cost(x, b))
Sn = Sn ∪ {(x, prediction, c)}

end

n.classifier = Learn(Sn)
end

return T
Algorithm 3: Training a filter tree

Figure 5.1: A four-classes filter tree example

misclassifying xa at this point. Because the importance associated to such
irrelevant samples is zero, they are effectively being ignored by the learning
algorithm.

Now, if N1 happens to misclassify xa, the sample will consequently be
propagated upwards with its importance being set to zero, as shown in table
5.2, and therefore will be ignored by the upper nodes.

Testing is simply a standard top-down procedure that outputs the class
y such that every classifier from the root to the leaf chooses y.

5.2 Advantages of the filter trees

In many practical pattern recognition problems, optimal solutions do not
exist. It could be because the training set contains contradictory examples,
or because the chosen feature space is not powerful enough to separate the
samples into distinct classes. As a result, the absolute error rate is not
that interesting when comparing classifiers. The more meaningful notion of
regret is defined as the difference between a classifier’s error rate on a given
problem, and the smallest error rate possibly achievable for that problem. In
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Node n Sn

a {(xa, a, 1)}
b {(xa, b, 0)}
c {(xa, c, 0)}
d {(xa, d, 0)}

N1 {(xa, a, 1)}
N2 {(xa, ?, 0)}
N0 {(xa, a, 1)}

Table 5.1: Training set Sn for all the nodes of the example filter tree

Node n Sn

a {(xa, a, 1)}
b {(xa, b, 0)}
c {(xa, c, 0)}
d {(xa, d, 0)}

N1 {(xa, b, 0)} !
N2 {(xa, ?, 0)}
N0 {(xa, ?, 0)}

Table 5.2: Training set Sn, if N1 misclassifies xa

other words, regret quantifies the avoidable error rate for a given problem.
Table 5.3, adapted from [2], compares the different classifiers we have dis-

cussed in terms of the error rate, the regret, and the number of evaluations.
In this table,

• e is the average binary error rate.

• r is the average binary regret.

• The ‘Error’ column gives an upper bound of the multi-class error rate
as a function of N and e.

• The ‘Regret’ column gives an upper bound of the multi-class regret as
a function of N and r. ‘none’ means that no regret transform provably
exists.

Reduction Error Regret Number of evaluations

1-vs-1 (N − 1)e (N − 1)r 1
2N(N − 1)

Tree log2(N)e none log2(N)
ECOC 4e none O(logN)

Filter tree log2(N)e log2(N).r log2(N)

Table 5.3: Comparison of some reduction schemes (from [2])
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Standard trees and filter trees are particularly efficient at run-time, be-
cause the number of evaluations varies in O(log2 N). They are faster than
the DAGSVM (N −1 evaluations), and much faster than the one-versus-one
majority voting scheme (C2

N ).
The filter tree typically performs better than the other algorithms, except

when compared to the ECOC: the filter tree error bound is not as good.
However, Beygelzimer et al. prove that the filter tree is consistent, in the
sense that given an optimal binary classifier (a classifier whose regret is 0),
the reduction yields an optimal N -class classifier. It has been proven that
the ECOC reduction (theorem 2 of [13]) and the tree reduction (section 5.1
of [2]) are inconsistent.

5.3 Application to speech recognition

Speech recognition systems must overcome two difficulties:

• Many applications, like dictation or car navigation systems, demand
real-time transcriptions, so the ASR decoding must be fast enough.
The limited number of evaluations of tree-based schemes makes the
filter tree a suitable candidate.

• State-of-the-art systems cannot avoid errors, particularly in noisy en-
vironments. The good bound on regret of the filter tree gives us some
guarantee that, provided we use good enough binary classifiers, like
SVMs, the multi-class system will perform reasonably well.

This elicits the use of SVM-based filter trees in ASR systems. One way
to do so is to proceed as follows:

• Given a vocabulary set, decide on a filter tree by choosing an arbitrary
ordering of the words. Assign each leaf to a word.

• Train a SVM for each node of the tree, according to the cost-insensitive
version of algorithm 3. Every sample that gets misclassified at any
point is removed from the training set of upper SVMs.

• Run-time recognition is a standard top-bottom tree-walking proce-
dure.

It should be noted that this scheme does not scale very well to large
vocabularies. For a set of 2n words, 2n+1 − 1 SVMs must be trained. A
medium-sized vocabulary of 4096 words would thus require 8191 SVMs. The
memory and CPU requirements for training that many SVMs can quickly
become problematic. Filter trees should therefore be confined to only small
vocabulary tasks. They remain particularly adapted to letter or digit recog-
nition.
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The question of which score space to use for each SVM remains open.
Should every SVM use the same score space, or should they have their own?
This question is answered through experimentations in chapter 7.3.
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Chapter 6

Filter trees for noise-robust

speech recognition

So far, the problem of noise has not been addressed. In this chapter, we
briefly introduce the notion of model compensation, and how it can be ap-
plied to build a noise-robust filter tree based on SVMs.

6.1 Noise compensation schemes

Automatic speech recognition systems are typically trained in ideal situ-
ations, with perfect recording hardware, and negligible background noise.
However, in real-life situations, the background noise cannot be controlled,
and therefore modifies the audio recordings significantly. This introduces
a mismatch between the training and the test conditions, which severely
damages the accuracy of ASR systems.

To counter this mismatch, a wide range of adaptation schemes has been
devised, like the Maximum Likelihood Linear Regression (MLLR) speaker
adaptation [14], Cepstral Mean Normalisation [28] front-end processing, and
uncertainty decoding [1], to name but a few.

Model compensation is a genre of adaptation which consists in training
a model from clean training data, and then adapting the obtained clean
model to a given noise environment by using noisy samples to re-estimate
the model parameters.

6.2 Single-pass retraining

A simple model-based compensation scheme called Single-Pass Retraining
(SPR) [7] is presented here. Given a specific noisy environment, assume
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that stereo data is available1 in the form of (X, C) where X = (~x1, . . . , ~xT )
is the observed, noise-corrupted data, and C = (~c1, . . . ,~cT ) is the set of the
corresponding clean speech data. Let MC be a HMM adequately trained
on C.

The SPR algorithm estimates the model parameters for a noise-adapted
model MX from the observed data X and the clean model MC , in a single
pass. For each component m, the expected observed value ~µm is approxi-
mated as:

~µm ≈
∑T

t=1 γC
m(t)~xt

∑T
t=1 γC

m(t)

where γC
m(t) is the posterior probability of the component m of the clean

model MC generating the observed vector ~xt at time t. Similarly, the vari-
ance can be approximated as:

Σm ≈
∑T

t=1 γC
m(t)(~xt − ~µm)(~xt − ~µm)⊤

∑T
t=1 γC

m(t)

Compared to the MLE training (section 2.2), the transition matrix and
the Gaussian component weights are not updated. Despite the simplic-
ity of the algorithm, Gales ([7], [8]) reports nice improvements over non-
compensated models.

6.3 Noise-dependent kernels and noise-independent

SVMs

Having chosen a model adaptation scheme such as SPR, noise-adapted HMMs
can be used to define a generative kernel as described in section 3.3.1. This
gives us a sound framework for building a “noise-agnostic” filter tree. As-
sume that a set (N1, . . . , Nn) of noise conditions have been defined. Let C

be a set of clean data, and (X1, . . . Xn) be the n associated sets of noise-
corrupted samples, where each sample xi ∈ Xi is the result of artificially
adding noise from source Ni to the clean sample ci. A noise-independent
filter tree can be trained according to the following process:

• Train a set of HMMs with clean data from C.

• Optionally split the noise conditions into a training set and a test set
of noise conditions. This is useful to experimentally verify that the
SVM-based filter tree is truly noise-independent.

1This is the case notably when noise is artificially added over clean recordings, as in
the AURORA[15] task.
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• For each training noise condition, estimate the noise-adapted genera-
tive model MNi

, and obtain from Xi a set of scores in a score space
derived from MNi

. Use these scores to train a noise-independent SVM.

• Build a filter tree where each node is a noise-independent SVM.

The justification of this scheme (represented in figure 6.1) is that the
noise-dependent kernels should nullify the signal variability that is caused
by the noise, so that the SVM nodes can work on a noise-independent feature
space.

Figure 6.1: Training a noise-independent SVM
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Chapter 7

The ISOLET task

7.1 The ISOLET database

7.1.1 Description

The speech database used for the first part of our experiments is the ISOLET
spoken letter database, from the Oregon Graduate Institute.

The database contains two utterances for each of the twenty six letters of
the alphabet, from 150 speakers, for a total of 7800 samples. The speakers
were raised in various locations in the United States, and their age varies
from 14 to 72 years.

The samples are grouped into five sets. Each set contains the 1560
utterances of 15 male speakers, and 15 female speakers. We will use the first
fourth sets as our training data, and the last set as our evaluation data.

The recordings were sampled at 16000 Hz. Each sample is composed of
a short silence (no longer than 50 ms), then the letter utterance, which lasts
around 320 ms, and then another short silence. The recordings are clean,
the mean SNR is 31.5 dB.

The waveforms are stored as OGI files. The OGI format is basically
an uncompressed format with a metadata header. The HTK toolkit [30]
natively supports this format. More details about the recording and the
signal preprocessing can be found in [4].

7.1.2 The E set

The ISOLET database contains recordings for the 26 letters of the alphabet,
but in this report, only the so-called “harder E set”, or simply put, the “E
set”, is focused on. It is defined as the set of letters whose pronunciations
end with the sound /e/, and thus comprises the following letters: B, C, D, E,
G, P, T, V, Z.

There are two reasons why we want to focus on this reduced set of letters.
First, Smith[23] reports that letters from the E set tend to be harder to
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classify:

For example, for the HMM system with 4 components per state,
74% of false classifications were for test samples drawn from the
E set. The test set probability of error given an E-set letter was
7.2%, whereas given a non E-set letter, it was 1.4%.

Therefore, focusing on the most problematic letters will make differences
in performances stand out more clearly.

The second reason is that this project required many various systems to
be built and tested. It was thus interesting to reduce the number of letters
considered. In particular, recognising the full alphabet with a one-versus-one
majority-voting classifier requires training C2

26 = 325 binary classifiers. If
we restrict ourselves to the E set, the majority voting only requires C2

9 = 36
classifiers, and the filter tree, 8 classifiers.

From now on, only the samples from the E set will be classified, and they
will be classified against the 9 letters of this set, not against the 26 letters
of the entire alphabet.

The following sections describe three baseline systems that provide a
base for evaluating the filter tree algorithm.

Beforehand, some notation conventions are introduced. The full alpha-
bet will be written as A. The E-set will be referred to as E , and its comple-
ment in A, ¬E .

The set of all sample data will be noted S, and the subset of sample data
drawn from E , SE . Where relevant, the distinction will be made between
the training data SE

train, and the test data SE
test.

7.2 Baseline systems

7.2.1 HMM baseline classifier

First, we built a HMM recogniser using the Hidden Markov Model Toolkit,
HTK[30], developed by the Cambridge University Engineering Department.
Version 3.4 of HTK was used, which is the current stable release at the time
of this writing.

Even though E is comprised of only 9 letters, we nevertheless trained
26 HMMs, one for each letter of A. Doing so sharpens up the recognition
accuracy on E . Samples drawn from ¬E give information about the acoustic
characteristics of E , thus refining the extent of each HMM Gaussian compo-
nent. We also built a HMM for modelling silence, which yields a total of 27
HMMs.

As represented in figure 7.1, the HMM initial template used for letters
has 10 emitting states, with a left-to-right topology and self loops, but no
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skips. Each state starts with a single-component, diagonal-covariance Gaus-
sian distribution. The silence HMM template is similar, except that it has
only one emitting state.

Figure 7.1: The HMM topology used

The observation feature space is based on 12 MFCC coefficients, plus
the signal energy, plus the deltas and accelerations of these values, giving a
total number of 39 MFCC E D A coefficients. The conversion from the original
waveforms to mfc files directly usable by the HTK toolkit was performed
by the HCompV utility. The MFCC coefficients were based on a 20-channels
filterbank. A Hamming windowing function was applied, and the analysis
window size was 25.6 milliseconds long. The signal was pre-emphasised by a
factor of 0.97. The other parameters1 have been left to their default value.
Appendix A.2 gives the full configuration file used.

HMMs were trained collectively using a maximum likelihood estimation
scheme, as described section 2.2. The whole process was very closely based
on Smith’s thesis (cf. section 6.2 of [23]), and was as follows:

• compute the initial means and variances for single-component GMMs

• perform 20 iterations of embedded training

• split all emitting states into 2-components GMMs

• perform another 20 iterations of embedded training

• split all emitting states into 4-components GMMs

• perform another 20 iterations of embedded training

The initial model means and variances were computed using HCompV,
by considering the relevant samples SL

train for each letter L. A variance
floor macro of 1% of the global variance was also inserted in the models, to
compensate for the limited amount of training data available.

Embedded training was done with HERest. A mixture weight floor (-w
option) of 1.1∗MINMIX was used. The number of Gaussian components was
gradually increased from 1 to 4, using HHEd.

The training process did not try to prevent overtraining. In fact, looking
at the evolution of the accuracy obtained with the various iterations, it was
noted that the final HMM set was not the optimal one. However, two

1The exhaustive list of HPARM options can be found in table 5.4, section 5.18 of [28]
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points should be made. First of all, the accuracy differences between the
latter iterations were small, around ±1% absolute. Secondly, we are more
interested in a systematic construction scheme. We will build other HMMs
that way, so comparing them on a stable basis is crucial.

The HMMs obtained were used to build a baseline recogniser for the
ISOLET database. Hypotheses were constrained to a silence-letter-silence
grammar. The recognition was done with HVite, which implements a token-
passing Viterbi algorithm, and returns the most likely hypotheses. HResults
was used to aggregate statistics about the results.

The baseline performances on the training and the test data are sum-
marised in table 7.1. Note that silences are not mentioned in the results,
because they were always recognised correctly, due notably to the enforce-
ment of the grammar network. Besides, the task of distinguishing silences
from (clean) speech is a trivial2 one. Including the silences as part of the
recognition rate would artificially increase the accuracy, and therefore si-
lences were systematically excluded.

Training data 2.27%
Test data 6.67%

Table 7.1: LER over E for the baseline HMM recogniser

Table A.2 in appendix A.4 gives the confusion matrix for the system.
The letter error rate (LER) of 6.67% is the same as reported by Smith.

7.2.2 One-versus-one majority voting classifier

The second baseline system is a SVM-based, one-versus-one majority-voting
classifier, based on section 4.3.

First, we trained a set B of C2
9 = 36 SVM classifiers for all the possible

unordered pairs of letters of E : B vs C, B vs D, up to B vs Z, then C vs D, and
so on.

It has been verified experimentally that the number of conflictual ties
during the voting, i.e. when there were strictly more than 2 finalists, was
limited to 3 or 4 occurrences out of 540, so the majority voting algorithm
1 rarely resorted to randomly picking a finalist. This confirms a posteriori
that the crudely implemented resolution scheme was enough for our needs.

This algorithm was tested against many different score spaces. Here,
results are given for only three of them. The first one (1v1-FK) was a Fisher
kernel based on the log likelihood of a single HMM trained with all the
samples of SE

train. We call such an HMM a merged HMM, and refer to it as
the BCDEGPTVZ HMM. The model template used for the training was initially

2Of course, in a noisy environment, separating “silence” from utterances is far from
trivial.

41



the same as for single letter models, even though the number of Gaussian
components was probably insufficient.

The score space was derived from the mw features of the Fisher kernel
(cf. table 3.1 in section 3.3.4 for the meaning of this code).

The second setup (1v1-GK) used specific generative score spaces for each
classifier. For instance, the SVM classifying B-vs-C was trained with samples
from SB

train ∪ SC
train. However, only mw score features were derived, so only

derivatives for the first model B (with respect to its means and component
weights) were used. A third setup (1v1-GK-2) was tried with mwxz score
features to use both models.

All the score spaces were normalised using a Mahalanobis distance based
on the inverse variance matrix.

Table 7.2 lists the results. Other score spaces not mentioned gave similar
results, with an accuracy between 92% and 93.3%. It is striking to note that
the majority voting is not doing better than a plain HMM recogniser, despite
the fact that the 1v1 classifier is a more expensive scheme. In particular,
generative kernels consume much more CPU, both for the off-line training,
and the run-time classification, but in the end, the cost is not worth it.

Setup Score features Test LER Correct predictions

HMM N/A 6.7% 504 / 540
1v1-FK mw 6.9% 503 / 540
1v1-GK mw 7.8% 498 / 540

1v1-GK-2 mwxz 6.7% 504 / 540

Table 7.2: Error rates of the 1v1 classifier on SE
test for a few score spaces

Sifting though the logs, it was observed that a huge majority of the
elected letters tend to win all their rounds, including wrongly classified let-
ters. Table 7.3 displays the numbers of samples that won a certain number
of votes, for the 1v1-FK setup.

Number of votes won Correctly classified Incorrectly classified

8 499 37
7 4 0

1 to 6 0 0

Table 7.3: Distribution of the number of samples by their votes on 1v1-FK

Winning the eight rounds of voting is not a guarantee that the result
will actually be correct, even though we would have expected the eight
different classification passes to complement each other, and constitute a
more reliable system. In fact, only in 4 instances did the system adequately
resolved (partially) inconsistent decisions, when 1 classifier out of the 8 was
wrong.
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It looks as if the majority voting scheme is not helping, because the
outputs of the 8 classifiers [ab] (a being fixed, b 6= a), are too correlated, and
do not provide independent and complementary information.

The results obtained in this section are slightly worse than the one Smith
reported in section 6.3 of [23], even though the experiments done here faith-
fully followed his description in section 5.4. His best system has a letter error
rate of 5.4%. A possible explanation is that he used a customised version of
SVMlight. Nevertheless, this is not a serious issue because our objective is
not to try to build the most accurate letter recogniser, but to build instead a
set of baseline systems to evaluate the usefulness of the filter tree approach
for speech recognition.

7.2.3 ECOC classifier

If we want to compare the filter tree with the ECOC approach, we need to
decide which length the error-correcting code should have. What should be
the leading criterion for the comparison? Possible choices include:

• Best performance for each system. Increasing L widens the distance
between the codewords, and therefore is expected to improve the per-
formance. However, deciding how long L should be is unclear, and
for scalability reasons, L cannot be very large. Above 20, the CPU
requirements become intractable.

• Same number of binary decisions per samples, i.e. similar run-time
cost. Anticipating a bit section 7.3, the ISOLET filter tree will have
4 levels. An ECOC with L = 4 means a mere 24 = 16 different
codewords. With such a short length, it is not possible to derive a 9-
classes code with a minimum Hamming distance greater than 1. That
means that the ECOC would be unable to correct any error.

• Same number of total binary classifiers to train. There are 1+1+2+4 =
8 binary classifiers in the filter tree, so we could take L = 8. That
means 256 different codewords, and an optimal Hamming distance of
4.

As a compromise, the decision was made to derive a 16-bit code for
the 9 classes, to favour the accuracy while keeping the complexity at an
acceptable level. Following 4.5, a 16-bit code was generated, and is explicited
in appendix A.3. Its Hamming distance is 6, hence the ECOC algorithm is
able to correct 3 errors.

The practical application of the ECOC approach to the ISOLET task
is now described. Because each class is a letter, each column of the code
table yields a set of letter. With the chosen code, column one represents the
string DEGV. The procedure for training the corresponding binary classifier
is as follows:
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1. Train a merged DEGV HMM, and the complementary BCPTZ HMM. The
HMMs were trained in parallel with single HMMs for each of the 17
letters of ¬E , as was done in 7.2.1.

2. Score the samples against the two HMMs. The best results were ob-
tained with a node-specific mwxz score space.

3. Train a DEGV-BCPTZ SVM.

The classifiers corresponding to the remaining columns are trained in a
similar fashion. The obtained error rate for the ECOC setup is given in
table 7.4, along with the HMM baseline classifier.

Baseline system Letter error rate

HMM 6.67%
ECOC-GK 6.30%

Table 7.4: LER for the ECOC system on SE
test

While ECOC is doing better than the HMM baseline, the results were
not as good as expected, at least with respect to the CPU cost of the method.
In particular, training all the HMMs and the SVMs required by the ECOC
algorithm was especially time-consuming (more than 20 times slower than
for the HMM recogniser).

7.3 Evaluation of the filter tree algorithm

7.3.1 Direct implementation

A SVM filter tree recogniser, based on algorithm 3, was implemented to
solve the ISOLET task. Since the way the binary tree should be ordered
is not mentioned in the filter tree approach, we initially picked the natural
alphabetical order. Figure 7.2 shows the resulting binary tree.

Amongst the variety of possible setups, the following two were chosen:

• FT-FK: Each SVM node is trained using the same BCDEGPTVZ Fisher
kernel. The derived features are mw.

• FT-GK: Each SVM node is trained with a specific generative kernel.
For instance, to build the node BC-DE, we train two merged HMMs,
BC and DE with the samples from SB ∪ SC , and SD ∪ SE respectively.
The derived features are mwxz to use explicitly both the left and right
models.

Again, the score spaces were normalised using the Mahalanobis distance,
based on Σ−1.
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Figure 7.2: E-set filter tree, using the alphabetical order

Setup Score features LER Correct predictions

HMM N/A 6.7% 504 / 540
ECOC-GK mwxz 6.3% 506 / 540

FT-FK mw 8.1% 496 / 540
FT-GK mwxz 7.4% 500 / 540

Table 7.5: Accuracy of the filter tree on SE
test

The results are presented in table 7.5. The performances were not
thrilling: the filter tree is doing worse than the three baseline systems. It
is instructive to investigate what is happening, at each level (depth) of the
tree. For now on, the following naming convention will be used:

• Level 0: refers to the 4 nodes classifying the leafs of the trees: B-vs-C,
D-vs-E, G-vs-P, T-vs-V

• Level 1: refers to the 2 nodes classifying level 1 nodes: BC-vs-DE and
GP-vs-TV

• Level 2: refers to the node classifying level 2 nodes, i.e. BCDE-vs-GPTV

• Level 3: refers to the root node: BCDEGPTV-vs-Z

We would like the filter tree to give a better accuracy than the plain
HMM recogniser. We formulate this objective as a lower bound for the
accuracy the filter tree should attain for each level. Let x be the average
success rate for a set of SVMs, as used by the FT. There are 4 binary
decisions to take to classify a sample from E . Recall that the HMM baseline
performance was 93.3%. In order to obtain an overall success rate better
than, say, 94%, it would be sufficient to have the success rate xp defined by:

xp =
4
√

0.940 = 98.5%
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Note that xp is a pessimistic estimate. The computation above assumes
that the sets Fn of samples that get misclassified at level n are disjoint, in
which case the errors are always cumulative. However, there is no reason a
priori for this to be true. Mathematically, the assumption is:

⋂

n

Fn = ∅

However, if there exists in practical a sample s ∈ F1 ∩F2, then the error
should be counted once, and not twice.

The relative good performances we obtained with the baseline HMM
recogniser and the generative kernels used in one-versus-one majority voting
are encouraging. That means the training process for level 0 classifiers
is probably appropriate. However, levels 1 to 3 are not performing well
enough. The performance of each level was therefore examined for the two
setups. Table 7.6 gives for each setup the local accuracy score per level. The
accuracy of level 1, for instance, is defined as the average accuracy of the
BC-DE SVM over SBCDE

test , and of the GP-TV SVM over SGPTV
test .

Setup Level Test error rate Correct predictions

FT-FK 0 1.7% 472 / 480
FT-FK 1 3.1% 465 / 480
FT-FK 2 3.1% 465 / 480
FT-FK 3 2.0% 529 / 540

FT-GK 0 1.0% 475 / 480
FT-GK 1 3.1% 465 / 480
FT-GK 2 3.5% 463 / 480
FT-GK 3 0.9% 535 / 540

Table 7.6: Accuracy level-by-level for the filter trees

Ideally, each level should have an accuracy of at least 98.5%. That means
less than 2 errors per 120 samples, per SVM. Only the SVMs at levels 0 and
3 pass this criterion for FT-GK, or are close enough for FT-FK. This is an
identified weakness in our direct implementation of the filter tree.

7.3.2 Increasing the model complexity

To address the problem of the naive filter tree’s poor performance, the com-
plexity of the models should be increased. Two methods were investigated:

• Strengthen the HMM models, by increasing the number of Gaussian
components per state

• Increase the dimensionality of the score space
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The HMM training scheme used seemed to be inappropriate for levels 1
and 2. This is actually not that surprising. We are using the same HMM
template whether we are recognising single letters, or sets of letters. The
number of four Gaussian components per state is adequate for level 0 nodes,
but fails to capture the acoustic richness of merged sets in upper levels.

To explore this idea, experiments were done with more complex HMM
templates for upper levels. For instance, level 1 HMMs were trained with
8 components per emitting state. To counter the growing problem of data
sparsity, states were tied. Since by definition, all the letters of the E set end
with the sound /e/, it made sense to tie the states at the end of each model.
However, the results obtained were disappointing, and led to no decisive
conclusions.

7.3.3 Concatenating scores

Results from the experiments so far indicate that building merged HMMs is
not the correct approach for the filter tree. Since level 0 SVMs work pretty
well, it is tempting to consider using them to build upper-level SVMs.

In order to build on the information of each SVM, the score concatena-
tion scheme described in 3.3.3 was used.

As explained by table 3.1, deriving mw scores from each single-letter
HMM yields a 1600-dimensional vector. Concatenating two of such vec-
tors in level 0 produces a 3200-dimensional vector; four in level 1, a 6400-
dimensional vector. If we blindly applied the same idea up to the level 3, we
would end up with 14400 dimensions. Clearly, a score space feature selection
is required.

According to section 3.3.2, only features with the largest Fisher ratios
should be retained. To estimate the optimal value for the number of features
to retain, the BC-vs-DE SVM was examined. Using mx features, scores from
the four B, C, D, E HMMs were concatenated, and then filtered. The results
are given in table 7.7.

# of retained features Error rate

500 2.50%
1000 1.25%

2000 2.08%
4000 2.08%
5000 2.08%
6400 1.25%

Table 7.7: Error rate of the BC-vs-DE SVM, on SBCDE
test , for different numbers

of features

It is remarkable that it was possible to significantly reduce the dimen-
sionality of the score space, from the unfiltered 4 ∗ 1600 = 6400 down to
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1000 features, while keeping the same accuracy. Although this is not the
case here, it also happened occasionally that reducing the dimensionality in-
creased the accuracy, probably because it removes noisy features that were
confusing the classifier. Smith confirms this in [21].

We consequently chose to retain 1000 features for level 1 SVMs. A
similar experiment was done on the level 2 BCDE-GPTV SVM, to select the
dimensionality of the upper level.

# of retained features Training LER Test LER

500 1.61 4.58
900 1.35 3.54

1000 1.15 3.33

1100 1.04 3.54
1150 1.20 3.33
1250 1.04 3.75
1500 0.99 3.96
2000 4.38 4.38

Table 7.8: Error rate of the BCDE-vs-GPTV SVM on SBCDEGPTV for different
numbers of features

It was decided that 1000 features were also a good choice for the level
2 SVM. Three new SVMs based on this new score space scheme were then
built. The error rates obtained are listed in table 7.9.

SVM LER

BC-DE 1.25%
GP-TV 2.08%

BCDE-GPTV 3.33%

Table 7.9: Error rates with concatenated score spaces on levels 1 and 2

The new scheme gave improved results for the problematic levels 1 and
2. However, performances were still not satisfactory.

7.3.4 Composite implementation

Smith & Gales[22] report that the HMM log likelihood ratio log(P1/P2)
(score feature l) is a powerful discriminative feature. However, experiments
done on lmw score spaces, instead of mw, did not notably improve the per-
formances, probably due to the score space whitening. As suggested in 4.6,
a composite approach was tried by interpolating the SVMs and the HMMs.

On level 1, the following experiment was tried:

1. For all s ∈ SBCDE
test , recognise s using first a B-C HMM recogniser, then

a D-E HMM recogniser. This yields two log likelihood scores sBC
HMM =
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log max{PB , PC}, sDE
HMM = log max{PD, PE} for each sample.

2. Similarly, for all s ∈ SGPTV
test , compute sGP

HMM and sTV
HMM .

3. For all s ∈ SBCDE
test , compute the SVM score sBC−DE

SV M using the BC-DE
SVM

4. For all s ∈ SGPTV
test , compute the SVM score sGP−TV

SV M using the GP-TV
SVM

5. For a given α ≥ 0, classify s ∈ SBCDE
test based on the composite score:

scomp(α) = sBC−DE
SV M + α. log

max{PB , PC}
max{PD, PE}

= sBC−DE
SV M + α.(sBC

HMM − sDE
HMM )

6. Similarly, classify each s ∈ SGPTV
test

7. Compute the average accuracy a(α) of the composite classifier over
SBCDEGPTV

test

8. Iteratively determine the optimal value for α.

α = 0 gives the SVM accuracy of 98.33%, and α = +∞ gives the HMM
accuracy of 96.25%. Note that α is determined to optimise the accuracy
on both the BCDE and the GPTV sets conjointly. Also, the optimisation
process was done over the test set, not the training set. Because the accuracy
of SVMs over training data is very high, and occasionally equal to 100%, this
interpolation would not have shown anything if the optimisation had been
performed over Strain. It is expected that the bias we introduce towards the
test set will be limited, because we only tune one parameter per level (two
parameters in total).

The accuracy graph obtained for level 1 is shown in figure 7.3. Although
the interpolation scheme did not yield a reduction of the error rate, it is
still interesting to note that there are two local maxima of the accuracy, for
α = 0 and α ∈ [10.8, 19.6]. Even though the merged HMM level 1 classifier
is not as good as the SVM, it is still able to contribute constructively in the
recognition.

The value α = 16 was chosen to build two composite level 1 BC-DE and GP-
TV classifiers. Comparing the confusion matrices of both the initial SVM and
the composite level 1 classifiers (table 7.10) shows that they essentially have
the same behaviour. Therefore, it was deemed unnecessary to implement a
composite level 1 classifier in this experiment.

A similar experiment was conducted on level 2. Again, 1000 features
were retained, using the Fisher ratio. The training yielded the results of
table 7.4.

49



96

96.5

97

97.5

98

98.5

99

0 5 10 15 20 25 30 35 40 45

%

α

Accuracy(α)

♦ ♦

♦ ♦

♦ ♦

♦ ♦

♦

♦

♦ ♦ ♦

♦

♦

Figure 7.3: Accuracy of the level 1 composite recogniser as a function of α

Setup BC DE GP TV

SVM BC 117 3 GP 116 4
DE 0 120 TV 1 119

Composite BC 118 2 GP 116 4
DE 0 120 TV 2 118

Table 7.10: Confusion matrices for the composite and non-composite level
1 recognisers

A notable improvement over the SVM system was observed for α = 150.
The best error rate obtained on level 2 was 2.08%.

It is now worthwhile to redesign our filter tree algorithm to use what
we have learnt so far. The second iteration of the system had the following
characteristics:

• All the SVMs are based on concatenated score spaces with mx features3.

• Level 2 SVM is a composite SVM-HMM recogniser configured with
α = 150.

• Level 1 is not composite.

3Because of a scalability issue in the internal tool that computes score statistics, only
half of Strain was used to train the BCDEGPTV-Z SVM, in order to keep the memory usage
below 2Gb. In the ISOLET database, each letter is pronounced twice by each speaker, so
only the first utterance was used in level 3. All samples were used for the other levels.
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Figure 7.4: Accuracy of the interpolated level 2 recogniser as a function of
α

Classifier LER

SVM 3.33%
SVM/HMM 2.08%

Table 7.11: Accuracies for the composite and non-composite level 2 recog-
nisers

• The alphabetical ordering is conserved (see figure 7.5).

With this configuration, the filter tree finally performed better: the final
test accuracy was 94.26%, which is a +0.93% absolute improvement over
the HMM baseline system (93.33%).

7.3.5 Robustness regarding the ordering

The filter tree paper[2] never mentions how the leafs of the tree should be
ordered. It is only said that a binary tree T should be fixed, with no indi-
cation on how to do it. Is the filter tree actually robust against a reordering
of its leafs? To find out whether this is the case, a number of different trees,
shown in figure 7.5, were tried.
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A) B)

C) D)

Figure 7.5: Various tree hierarchies

They were:

• A: The reference alphabetical ordering: B, C, D, E, G, P, T, V, Z

• B: An arbitrary ordering where leafs are paired in an attempt to re-
group HMM confusable pairs.

• C, D: Two random orderings, generated by the computer

Levels 1, 2 and 3 were composite levels. The α parameter was set re-
spectively to 16, 150 and 90. These values were obtained by optimising the
performance of each level for the ordering A. The other orderings used the
same α values, even though they might not have been the optimal ones.

Order LER

A 5.37%
B 6.11%
C 5.37%
D 5.55%

Table 7.12: Error rates of the filter tree on various orderings

The results, listed in table 7.12, were encouraging. Not only has the
accuracy globally improved, but it is also reasonably independent from the
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choice of the binary tree. Moreover, even though the α were optimised for
the setup A, they were reliable enough for the other setups.

It should however be noted that the insensitivity to ordering is actually
not a consequence of the filter tree algorithm itself, but seems to be a char-
acteristic of the composite nature of non-leaf SVMs. To prove this point,
experiments have been conducted where composite SVMs were built only
for level 24. In such an environment, the error rates varied widely. Setup B
in particular gave a disappointing error rate of 8.5%. Comparing tables 7.13
and 7.14 makes this fact more explicit. These two tables give the number of
errors committed globally on each level, for each of the four setups. When
all levels are composite (table 7.13), the number of errors at a specific level is
relatively independent of the ordering. On the other hand, when only level 2
is composite (table 7.14), then the numbers of error on non-composite levels
vary greatly. For instance, errors for level 1 go from 5 to 16.

Setup C is peculiar: it does many mistakes on level 0 in both setups,
which is usually the most accurate level. On level 1 however, it does re-
markably well.

Level → 0 1 2 3
Order ↓

A 5 8 10 6
B 4 12 9 8
C 11 2 11 5
D 2 11 10 7

Avg LER (%) 99.0 98.5 98.1 98.8

Table 7.13: Number of errors by level, on various orderings, with composite
levels. The four average LER per level are also given; three of them are
greater that the target accuracy per level of 98.5%.

Level → 0 1 2 3
Order ↓

A 5 8 10 6
B 4 16 9 16
C 10 5 10 6
D 2 13 10 9

Table 7.14: Number of errors by level, on various orderings, with only level
2 being composite

4Level 2 was selected for being the weakest one regarding measured accuracy.
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7.4 Results table

Table 7.15 summarises the best results obtained on the E set with the three
baseline systems and the filter tree.

System Letter error rate

HMM 6.67%
1v1-GK-2 6.67%
ECOC-GK 6.30%
FT naive 7.40%

FT composite 5.37%

Table 7.15: Error rates on the ISOLET task for the E set
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Chapter 8

The AURORA task

Having obtained interesting results on the ISOLET classification, it was
deemed worthwhile to apply the filter tree on a more realistic task. The
AURORA task is more challenging than the ISOLET task, notably because
it involves noisy speech, and it is a continuous recognition task.

Due to the limited remaining time, not many experiments could be
tempted on the AURORA task. However, as discussed below, the few results
obtained were interesting.

8.1 The AURORA database

The AURORA database [15] has been designed to evaluate ASR systems in
noisy conditions. The source speech is the TIdigits connected digits task,
where sequences of up to 7 digits are uttered by male and female American
speakers. The digits include ‘oh’ as a synonym for ‘zero’, giving a total
of eleven allowed words. The recordings were sampled at 20kHz in clean
conditions, then downsampled at 8kHz using a low-pass filter with a cutoff
frequency of 4kHz.

Only a subset of the database has been used in this experiment. For
that subset, stereo data was available so single-pass retraining, as discussed
in section 6.2, was applicable.

Four types of noise were artificially added to the clean speech data. For
the same type of noise, different signal-to-noise ratios were used to corrupt
the clean speech: 20dB, 15dB, 10dB and 5dB. Hence, 16 noise conditions
were defined. For now on, the Ni SNRjj notation will be used to designate
the data set obtained by adding noise Ni with the SNR jj dB on the clean
speech.

For each noise condition, 422 training utterances and 1001 test utterances
are available.

39-dimensional feature vectors, consisting of 12 MFCC coefficients in-
cluding the zeroth cepstrum, as well as the deltas and accelerations, was
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Code Description

N1 suburban train
N2 babble from a crowd of people
N3 car
N4 exhibition hall

Table 8.1: The different type of noises added

extracted from the input data. Details of the feature extraction are given in
appendix A.2.

HMMs were trained for each word with 16 emitting states and 3 Gaussian
components per state. Silence and inter-word pauses models were trained as
well, with respectively 3 and 1 emitting states, and 6 Gaussian components
per state.

8.2 Implementation of the filter tree

The implementation was loosely based from [8], with the notable difference
that the recognition algorithm was replaced by a filter tree. Building on
section 6.3, the key objective here is to train a set of noise-independent
SVMs that rely on noise-dependent kernels to adapt to the specific acoustic
environment.

First, for each noise condition N , described in section 8.1, a set of HMMs
{MN} was trained using SPR, as was explained in 6.2.

For each training sample recorded in noise condition N , 11 feature vec-
tors were derived using the {MN} models. Only the components means
were considered here (m features), and the vectors were limited to 1500 di-
mensions, using the Fisher criterion. The vectors were then concatenated,
as was done in 7.3.3.

SVMs for the filter tree were trained using samples from nine sets out
of sixteen: N2 SNR05, N2 SNR10, N2 SNR15, N3 SNR05, N3 SNR10, N3 SNR15,
N4 SNR05, N3 SNR10 and N4 SNR15. Not all the noise conditions were used
for the training in order to verify whether the filter tree can be noise-
independent.

The filter tree was tested on two noise conditions1: N1 SNR20 and N2 SNR05,
which are the sets with respectively the best and the worst error rate when
using the HMM-SPR recogniser.

Compared to the ISOLET database where each sample was a single
letter, here a sample represents a sequence of digits. Therefore, before we
can use the filter tree, the utterance must be split into speech segments which
should be aligned as closely as possible to the real uttered digits. This was

1Due to the limited time, it was not possible to test all the noise conditions.
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Figure 8.1: The binary tree used for the Aurora task

done using the SPR-adapted HMM recogniser. Then, each fragment of the
utterance went through the filter-tree for digit identification.

The binary tree fixed for the task is shown in figure 8.1. To follow [8]
more faithfully, an additional node should have been added to represent
silences, but this was not done due to the limited time. The consequence of
this is that the filter tree recogniser will not be able to correct deletion and
insertion errors.

Each SVM level was interpolated with the associated HMM recogniser.
The interpolation values used for each level were as follows: α0 = 35, α1 =
30, α2 = 50, α3 = 90.

8.3 Results

First, it was verified (table 8.2) that the SPR training is a remarkably effec-
tive adaptation scheme, and gave good results over unadapted HMMs. In
particular on N2 SNR05, the unadapted HMMs are, as expected, completely
unusable, while the SPR-adapted HMMs gave a respectable error rate of
18.83%.

Classifier Noise condition WER

Clean HMM N1 SNR20 2.76%
HMM-SPR N1 SNR20 1.60%
Clean HMM N2 SNR05 73.82% !
HMM-SPR N2 SNR05 18.83%

Table 8.2: Word error rates for unadapted and SPR-adapted HMMs

Table 8.3 compares the performance of the HMM-SPR and the composite
filter tree classifiers. The filter tree was able to reduce the word error rate
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Noise Classifier Number of errors WER
condition Subs Dels Ins %

N1 SNR20 HMM-SPR 33 8 13 1.60%
N1 SNR20 FT-comp 25 8 13 1.41%
N2 SNR05 HMM-SPR 194 34 363 18.83%
N2 SNR05 FT-comp 180 34 363 17.44%

Table 8.3: Error rates on the AURORA task

in both cases. Insertion errors, more than substitutions, are the largest
source of errors for N2 SNR05. Unfortunately, these stand uncorrected in our
setup. Still, it is encouraging to see that filter tree was able to adapt to
new noise conditions, so the combination of noise-dependent kernels with
noise-independent SVMs was successful.

Gales’s combined HMM/SVM system[8] has an error rate of 18.05% on
the N2 SNR05 set. This figure does not include the gain induced by correcting
insertions and deletions errors, so that the error rates between the two setups
are comparable. While Gales used a crude interpolation policy (one α value,
manually estimated on a small subset of data), experiments seem to indicate
that the performances of both systems were relatively stable with respect to
α.

The filter tree composite system therefore gave encouraging results on
a realistic, noise-corrupted task. A caveat though: although Gales’s results
with SPR-trained HMM were exactly reproduced, it was unfortunately dis-
covered very late that the MFCC encoding used for the composite filter tree
setup was slightly different than for the adapted HMM. Re-training HMMs
with the second MFCC encoding gave better results. The filter tree behaved
slightly worse at first when the α factors were left unchanged. Relatively
better results were obtained by re-estimating the α. The problem is that
the accuracy was not robust against the choice of the α’s. This is surprising
because that was not the case for the ISOLET task. As a conclusion, the
gain provided by the filter tree on the AURORA task is still unclear, and
the results should be taken with a pinch of salt until more investigation is
conducted.
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System Test set Word error rate

HMM SPR N1 SNR20 1.60%
HMM/SVM partial rescoring N1 SNR20 1.38%

FT composite N1 SNR20 1.41%

HMM SPR N2 SNR05 18.83%
HMM/SVM partial rescoring N2 SNR05 18.05%

FT composite N2 SNR05 17.44%

HMM/SVM complete rescoring N1 SNR20 1.38%
HMM/SVM complete rescoring N2 SNR05 11.09%

Table 8.4: Best performance for each system. The HMM/SVM rescoring
figures are taken from [8].
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Chapter 9

Conclusions

In any decision graph where there is a unique path from the root to any
leaf, it is enough to take only one wrong binary decision anywhere along the
path to cause a global misclassification. For the filter tree on the ISOLET
task, that represents four occasions of making a mistake, for each sample.
A contrario, ECOC are inherently capable of correcting local errors, as long
as they are limited in numbers. Therefore, it could have been expected that
ECOC would perform better than the filter tree. However, that was not
the case on the ISOLET task. Indeed, the filter tree, at least in its final
form, gave significantly better results, while ECOC only did slightly better
than the baseline HMM recogniser. This is all the more surprising that the
filter tree is relatively faster to train and to use than the ECOC. It seems to
indicate that the bound on the regret, as derived in [2] could be a relevant
qualitative indicator of a classifier’s expected performance.

This report proved that filter trees can successfully be applied to the
domain of speech recognition. This fact was not immediately obvious since
first, generative kernels had to be introduced, score spaces concatenated and
filtered, and finally connected speech had to be segmented with a standard
HMM recognizer. Moreover, the first implementation without SVM/HMM
composition gave slightly disappointing results, and was sensitive to the
ordering of its leafs. Two points are believed to be paramount for an efficient
filter tree:

• The complexity of the generative score space must be carefully con-
trolled. Even though the Fisher ratio might not be the best infor-
mational criterion, using it to select meaningful dimensions was quite
effective.

• The HMM log likelihood ratio was a crucial piece of information, and
required to be scaled appropriately. Using a composite HMM/SVM
system was one way to achieve that.

On the other hand, the HMM training method, and score features other
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than the log likelihood ratio and the derivatives with respect to the means
(l, m), were comparatively less interesting.

The filter tree has shown its limits on a few occasions though. First, in
the form used in this report, it remains restricted to small vocabulary tasks.
It would be interesting to see if SVMs can be trained on phone speech units,
without context, to solve LVCSR tasks. For 40 phones, that would mean a
filter tree of height 7. It would also greatly rely on an adequate segmentation
of the speech into phones from an upstream system. Triphones, as used in
many HMM LVCSR systems, are not going to be tractable, because that
would mean training around 23,000 SVMs for all the (commonly) observed
triphones in the English language.

More intriguing was that the choice of the α’s seemed robust for the
ISOLET task, but not for the AURORA task. This could be a consequence
of the presence of noise, but it is hard to be conclusive here.

More investigation is thus warranted. First, the questions of how the
α parameter should be estimated, and how stable the derived filter tree
accuracy is robust in that regard, remain open.

For the more ambitious AURORA task, the effectiveness of the filter
tree to correct deletion and insertion errors by inserting a silence node in
the tree should also be evaluated. It could also be very interesting to replace
the SPR adaptation by a more sophisticated model compensation scheme,
to see if the accuracy is improved, and if the choice for the α’s becomes
robust.

Finally, the comparison on the ISOLET task ended up being a bit unfair
for the ECOC, because we greatly improved the score spaces for the filter
tree, but not for the ECOC. It would be interesting to benchmark the filter
tree and the ECOC approaches with more comparable score spaces.
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Appendix A

Implementation details

A.1 SVMlight

The SVMs were implemented using Joachims’s SVMlight toolkit[32], based
on [12]. Training was done using svm learn with the default options. In
particular, linear kernels were always used, and the C trade-off parameter
was left at its default value.

SVM classification over TCP

Gerber[29] has written a small extension for SVMlight that allows svm classify

to act like a TCP/IP server. This turned out to be quite handy for this
project.

The filter tree approach requires each sample to go through many dif-
ferent SVMs. Because svm classify takes a significant amount of time to
parse its model file, it was not tractable to spawn a process svm classify

for each sample, and each SVM. It was also not practical to process all the
samples through one SVM in one batch. A nice way to solve this practical
hurdle was to spawn one TCP/IP server for each SVM classifier, and use
these servers repeatedly through the filter tree training, and the classifica-
tion. That way, each SVM were initialised only once, and the CPU cost was
dramatically reduced.

The code of this extension was not used as is, but was modified to correct
a critical bug, triggered by the large amount of data that was sent through
the TCP tunnel.
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A.2 MFC files generation

The following listing gives the configuration options specified to HCopy to
generate the mfc files from the original ISOLET ogi files.

SOURCEFORMAT = OGI

SOURCEKIND = WAVEFORM

TARGETKIND = MFCC_E_D_A

NUMCEPS = 12

NUMCHANS = 20

TARGETRATE = 100000

WINDOWSIZE = 256000

The following listing gives the configuration options that was used for
the AURORA task.

TARGETKIND = MFCC_0_E

SOURCEFORMAT = NOHEAD

TARGETRATE = 100000.0

SAVECOMPRESSED = T

SAVEWITHCRC = T

WINDOWSIZE = 250000.0

USEHAMMING = T

ENORMALISE = F

ZMEANSOURCE = F

PREEMCOEF = 0.97

NUMCHANS = 24

CEPLIFTER = 22

NUMCEPS = 12

SOURCERATE = 1250.0

LOFREQ = 64

HIFREQ = 4000
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A.3 ECOC code

Table A.1 gives the 16-bit long ECOC code used in section 7.2.3. It can be
noted that the various systems considered often have a couple of outstanding
confusable pairs. However, these pairs change from a system to another. In
particular, SVMs based on generative kernels always had different confusable
pairs than the HMMs that were used to build the score space.

Class Binary codeword

B 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
C 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1
D 1 1 1 0 0 0 1 0 0 1 1 1 1 0 0 0
E 1 0 0 1 1 1 1 0 1 0 0 1 1 0 0 0
G 1 0 1 0 0 0 0 0 1 0 1 0 0 0 1 1
P 0 0 0 0 1 1 0 1 0 1 0 0 1 1 0 0
T 0 1 0 0 0 1 1 1 0 0 1 1 0 1 0 0
V 1 0 1 0 1 0 0 1 0 0 0 0 1 0 0 1
Z 0 0 1 1 1 0 1 0 1 1 1 0 0 1 0 1

Table A.1: 16-bit long ECOC code used in the experiments

A.4 Confusion matrices

B C D E G P T V Z

B 54 4 2
C 58 2
D 55 1 1 3
E 4 1 54 1
G 57 3
P 59 1
T 1 2 2 55
V 3 1 56
Z 3 1 56

Table A.2: Confusion matrix on the E set for the baseline HMM recogniser
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B C D E G P T V Z

B 53 1 4 2

C 1 59
D 54 2 2 1 1
E 2 57 1
G 57 3
P 1 57 1 1
T 2 2 56
V 6 3 1 50
Z 4 2 54

Table A.3: Confusion matrix for the best majority voting system, 1v1-GK-2.
Notice the most confusable pair B/V. Compared to the baseline HMM sys-
tem, the pair B/E is recognised more accurately here.

B C D E G P T V Z

B 55 5

C 1 59
D 55 1 2 1 1
E 1 56 3
G 1 2 56 1
P 1 2 51 3 3
T 1 1 57 1
V 1 1 58
Z 1 59

Table A.4: Confusion matrix for the ECOC classifier.
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